كورس لتعليم اساسيات التعلم العميق والشبكات العصبية الالتفافية للمبتدئين وحتى المستوى المتقدم
سواء كنت طالباً فى علوم الحاسب او طالباً فى الهندسة أو مبرمجاً وتعشق مجال الذكاء الاصطناعى , فإن هذا الكورس سيساعدك علي فهم أساسيات التعلم الشبكات العصبيه الالتفافية و الوصول إلى مستوى محترف
وسوف يركز هذا الكورس على الجوانب النظرية وراء الخوارزميات والنماذج المنتشره هذه الايام للتعلم العميق
This course is focus on the theoretical aspects of the recent convolutional neural network based methods.
###################################################################
###################################################################
Section 1: Introduction to Convolutional Neural Network (CNN)
Lecture 1: Introduction to Deep Learning
Lecture 2: ImageNet Challenge
Lecture 3: Drawbacks of Previous Neural Networks
Lecture 4: CNN Motivation & History
Section 2: Convolutional Neural Network Properties
Lecture 5: Local Connectivity
Lecture 6: Parameter Sharing
Lecture 7: Pooling & Subsampling
Section 3: Convolution Operation
Lecture 8: Definition of Convolution
Lecture 9: Image Convolution Example
Lecture 10: Other Filters
Section 4: Convolutional Neural Network Layers
Lecture 11: Convolutional Layer
Lecture 12: Strided Convolution
Lecture 13: Strided Convolution with Padding
Lecture 14: Convolution over Volume
Lecture 15: Activation Function (ReLU)
Lecture 16: Pooling Layer
Lecture 17: Convolutional Network
Lecture 18: BatchNormalization Layer
Section 5: Convolutional Neural Network Architectures
Lecture 19: Introduction to CNN Architectures
Lecture 20: LeNet-5
Lecture 21: AlexNet & ZFNet
Lecture 22: VGGNet
Lecture 23: GoogleNet (Inception Network)
Lecture 24: Inception V2, V3, V4, Inception-ResNet-v1, Inception-ResNet-v2
Lecture 25: Xception
Lecture 26: Residual Neural Network (ResNet)
Lecture 27: DenseNet
Section 6: CNN for Object Detection
Lecture 28: Computer Vision Tasks
Lecture 29: Introduction to Object Localization and Detection
Lecture 30: Classification + Localization
Lecture 31: Object Detection with Sliding Window
Lecture 32: R-CNN
Lecture 33: Fast R-CNN
Lecture 34: Faster R-CNN
Lecture 35: You only look once (YOLO)
Section 7: CNN for Instance Segmentation
Lecture 36: Instance Segmentation
Lecture 37: Mask R-CNN
Section 8: CNN for Semantic Segmentation
Lecture 38: Semantic Segmentation
Lecture 39: Semantic Segmentation with Sliding Window
Lecture 40: Fully Convolutional Network
Lecture 41: Up-sampling with Transposed Convolution
Lecture 42: Fully Convolutional Network: Skipping Connections
1157
42
TAKE THIS COURSE