Electromagnetism Physics - Moving Charges and Magnetism

Those preparing for board and competitive exams State Board, CBSE, ICSE , IGCSE, MHT-CET & NEET

Ratings 0.00 / 5.00
Electromagnetism Physics - Moving Charges and Magnetism

What You Will Learn!

  • Introduction
  • Magnetic Force
  • Motion in a Magnetic Field
  • Motion in combined electric and magnetic fields
  • Magnetic field due to a current element ; Biot-Savart law
  • Magnetic field on the axis of circular current loop
  • Ampere's circuital law
  • The solenoid and the toroid
  • Force between two parallel currents ; the Ampere
  • Torque on current loop ; magnetic dipole
  • The moving coil galvanometer

Description

Moving Charges and Magnetism

  • Concept of magnetic field −

    • Oersted’s experiment

  • Biot - Savart law and its application to current carrying circular loop

  • Ampere’s law and its applications to infinitely long straight wire

  • Straight and toroidal solenoids

  • Force on a moving charge in uniform magnetic and electric fields

  • Cyclotron

  • Force on a current-carrying conductor in a uniform magnetic field

  • Force between two parallel current-carrying conductors-definition of ampere

  • Torque experienced by a current loop in uniform magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

SUMMARY

1. The total force on a charge q moving with velocity v in the presence of magnetic and electric fields B and E, respectively is called the Lorentz force. It is given by the expression: F = q (v × B + E) The magnetic force q (v × B) is normal to v and work done by it is zero.

2. A straight conductor of length l and carrying a steady current I experiences a force F in a uniform external magnetic field B, F = I l × B where|l| = l and the direction of l is given by the direction of the current.

3. In a uniform magnetic field B, a charge q executes a circular orbit in a plane normal to B. Its frequency of uniform circular motion is called the cyclotron frequency. This frequency is independent of the particle’s speed and radius. This fact is exploited in a machine, the cyclotron, which is used to accelerate charged particles.

4. The Biot-Savart law asserts that the magnetic field dB due to an element dl carrying a steady current I at a point P at a distance r from the current element

5. The magnitude of the field B inside a long solenoid carrying a current I is B = µ0 nI.

6. Parallel currents attract and anti-parallel currents repel.

7. A planar loop carrying a current I, having N closely wound turns, and an area A possesses a magnetic moment m where, m = N I A and the direction of m is given by the right-hand thumb rule : curl the palm of your right hand along the loop with the fingers pointing in the direction of the current. The thumb sticking out gives the direction of m (and A) When this loop is placed in a uniform magnetic field B, the force F on it is: F = 0 And the torque on it is, τ = m × B In a moving coil galvanometer, this torque is balanced by a countertorque due to a spring, yielding kφ = NI AB. where φ is the equilibrium deflection and k the torsion constant of the spring.

8. A moving coil galvanometer can be converted into a ammeter by introducing a shunt resistance r s , of small value in parallel. It can be converted into a voltmeter by introducing a resistance of a large value in series.

Who Should Attend!

  • Complete Physics for Engineering and Medical Entrance Exam Preparation. ( IIT JEE Main | Advanced | BITSAT | SAT | NEET etc.)
  • Those preparing for board and competitive exams State Board, CBSE, ICSE , IGCSE, MHT-CET & NEET
  • Courses are suitable for 160 countries from Europe, America, Middle East, Asia, Africa and APAC. Notably England, Germany, France, Sweden, Ireland, Scotland, USA, Canada, UAE, Saudi, Qatar, Kuwait, Malaysia, Indonesia, Myanmar, Newzealand, Australia, South Africa, South Korea, Nigeria, Nepal, Sri Lanka, etc

TAKE THIS COURSE

Tags

  • Electromagnetism

Subscribers

13

Lectures

33

TAKE THIS COURSE



Related Courses