Journal bearing is an important component of any machine such as in crankshaft of automobile engine. It helps to reduce friction and allow motion in required direction and restrict them in other direction. There is different type of bearings such as ball bearing, roller bearing, journal bearing etc. In this course we are going to solve numerically journal bearing with given conditions and geometric parameters. At the end of course you will validate CFD results shown in this course with data from Shigley's Mechanical Engineering Design Book.
First, we will start with discussion on bearings and types. Then we will discuss about the journal bearings, different terms such as eccentricity, eccentricity ratio, clearance. We will also discuss the design parameters for journal bearing solved in this course as well. After that we will discuss about the material properties, whether flow is laminar or turbulent, Sommerfeld number and corresponding optimum parameters from Shigley's book. We will also go through modelling approaches such a full Sommerfeld, half Sommerfeld or cavitation modelling through multiphase modelling in CFD. Then we will create geometry in Spaceclaim, hexa mesh in ICEMCFD and subsequently problem setup and simulation in Fluent.
After solving problem in Fluent, we will obtain results by post processing in Fluent and CFD post. Specially plotting the static pressure around circumference of journal and displaying it as pressure vs angular coordinates from 0 to 360 degrees. We will also find out the value of loading on bearing in reverse fashion by finding out the value of maximum pressure and maximum pressure ratio of film thickness. We will also show the angular position of maximum pressure and zero pressure. We will compare them with data we get from Shigley's Mechanical Engineering Design Book. I have found that resultss are matching very well and thus validation is done perfectly.