*2017/8/14 最終課題のサンプルコード(Jupyter Notebook形式)を掲載しました。
*2017/6/2 バックプロパゲーションのレクチャーを追加しました。
*2017/5/17 多層ニューラルネットワークでの出力計算を掲載しました。
ニューラルネットワークを多層化したディープラーニングは、画期的な精度向上を実現し、大変注目を集めています。そして、TensorFlow, Chainer, Caffe 2などさまざまなライブラリが登場して、以前より手軽にディープラーニングを実装できるようになりました。
しかし、こうしたライブラリを使いこなすためにも、ブラックボックス化されている最適化の手法を理解しておくと、学習の精度を向上させるためのパラメーター最適化などに役立ちます。
この講座では、上記のような各種ライブラリを使用せず、NumPyやPandasなど行列計算やデータ入出力ライブラリだけを使用してニューラルネットワークを作成し、誤差の逆伝播(バックプロパゲーション)による重みの最適化や、勾配降下法の原理についての理解を目指します。
これにより学習率や隠し層の数などのパラメーターを変化させると、結果にどのような影響があるのか、を体験を通じて理解できます。
レクチャーでは数学的な処理についても逐一解説をしていきます。中学レベルの数学的知識があれば理解できるように指数対数や、微分、合成関数の微分(チェインルール)などについて解説をしますので、高校数学に自信がない方でもチャレンジできます。
数学的な解説・理解が不要な方、映像による学習は好きではない方には受講をお勧めしませんので、十分ご注意ください。
それでは一緒に学びましょう!