Мы разберем фундаментальные и прикладные подходы к классификации данных с помощью машинного обучения для страхового скоринга Prudential в соревновании на Kaggle вплоть до формирования конечного результата с помощью ансамбля стекинга.
Курс разбит на 2 части. В первой части мы последовательно пройдем все этапы работы с данными: от видов задач и их постановки до работы с моделями машинного обучения для минимизации предсказательной ошибки. Дополнительно рассмотрим фундаментальные основы построения моделей машинного обучения, базовые метрики и наиболее простые модели - линейную и логистическую регрессии. А также метрики, модели и ансамбли классификации.
Во второй части на практике разберем:
Проведение исследовательского анализа данных для поиска зависимостей: EDA.
Метрики классификации: точность, полнота, F1, квадратичная каппа и матрица неточностей.
Очистка данных и оптимизация потребления памяти.
Кластеризация данных и метод ближайших соседей.
Простая и иерархическая логистическая регрессия.
Метод ближайших соседей и поиск оптимальной модели.
Метод опорных векторов: SVM.
Дерево принятия решения и случайный лес (бэггинг).
XGBosot и градиентный бустинг.
LightGBM и CatBoost
Ансамбль стекинга для голосования и выбора лучшего результата.
Выгрузка результата для соревнования на Kaggle.